Сила упругости полезное проявление силы. План урока Силы в природе. Сила упругости, трения. Виды упругих деформаций

Сила, с которой тело притягиваются к Земле, называется силой тяжести .

Fт – сила тяжести. Она направлена вертикально вниз если не учитывать. Точка приложения силы тяжести находится в центре тела.

g = 9,8 Н/кг – коэффициент пропорциональности, показывающий, что на тело массой 1 кг действует сила тяжести равная 9,8 Н

F Т = mg – модуль силы тяжести, где m – масса тела.

Отсюда видим, что сила тяжести прямо пропорциональна массе тела.

Сила тяжести, действующая на данное тело зависит:

1. От высоты тела над поверхностью Земли. Если тело поднять на некоторую высоту, то сила тяжести уменьшится.

2. От местоположения на Земле. Вследствие вращения Земли она сплюснута у полюсов. Тело находится ближе к центру Земли и g больше, поэтому на полюсах сила тяжести больше чем на экваторе.

Сила тяжести равна сила всемирного тяготения, действующая на тело со стороны Земли, (если не учитывать суточное вращение Земли).

Сила упругости – это сила, возникающая при деформации тела и препятствующая ей.

F упр – сила упругости. Она направлена всегда против деформации тела.

Точка приложения силы упругости находится на опоре, или на подвесе

Английский ученый Роберт Гук установил: сила упругости, возникающая при упругой деформации растяжения и сжатия, прямо пропорциональна абсолютному удлинению тела и направлена против деформации. L 0 - начальная длина тела. L – конечная длина тела. ∆L = L – L 0 –удлинение тела, показывает на сколько изменяется длина тела F внеш. – внешняя сила, вызывающая деформацию тела. ∆L>0 , при деформации растяжения. ∆L<0 , при деформации сжатия.

F упр. = k | ∆L| -закон Гука

k – жесткость тела – физическая величина, показывающая какая сила упругости возникает в теле при его удлинении на 1 м. [к] = Н/м

Сила трения – это сила, возникающая при касании двух тел и препятствующая их взаимному перемещению. Сила трения всегда направлена против скорости тела.

Причиной возникновения силы трения покоя является:

    1. Неровности на соприкасающихся телах.
    2. Силы взаимного притяжения между молекулами соприкасающихся тел.

Чтобы уменьшить трение используют смазку, которая заполняет неровности и разъединяет молекулы соприкасающихся тел, не давя им притягиваться. Сила трения относится к электромагнитным силам.

Виды трения : трение покоя, трение скольжения, трение качения.

Трение покоя .

F тр. пок. – это сила препятствующая началу движения одного тела по поверхности другого.

F тр.пок. = F тяги, если v = 0

F тр.пок. мах. – сила трения покоя максимальная



F тр.пок. мах. = F тяги, если v = const, т. е. она равна той силе тяги, которая сдвигает тело с места.

Сила трения покоя играет большую роль в нашей жизни, т. к. благодаря ей мы можем перемещаться; она помогает сдвинуть с места транспортное средство, она удерживает одно тело на поверхности другого.

Сила трения скольжения .

Сила трения скольжения – это сила трения возникающая при скольжении одного тела по поверхности другого.Fтр. ск. = F тяги, если тело движется прямолинейно и равномерно.

Fтр. ск.

Сила трения скольжения не зависят от площади соприкасающихся тел.

Fтр. ск. зависит:

1.от силы давления. Чем больше сила давления, тем больше и сила трения.

2. от качества обработки поверхностей соприкасающихся тел

3. от материала соприкасающихся тел.

Сила трения качения .

Сила трения качения - это сила, препятствующая качению одного тела по поверхности другого.

Основная причина ее возникновения в том, что катящееся тело, деформирует опору и ему приходится все время выкатываться из образующейся лунки.

Fтр. кач. = F тяги, если тело движется прямолинейно и

При прочих равных условиях сила трения качения всегда меньше силы трения скольжения.

На этом свойстве основано применение шариковых и роликовых подшипников.

Сила сопротивления.

Сила сопротивления – это сила трения возникающая при движении тела в жидкости или газе. В жидкости нет силы трения покоя, поэтому даже небольшая сила тяги может сдвинуть тело с места.

F с зависит:

  1. от скорости движения тела. При небольших скоростях Fc прямо пропорциональна скорости, а при больших скоростях пропорциональна квадрату скорости.
  2. от геометрической формы тела. Наиболее обтекаемой является каплевидная форма тела.
  3. от вязкости жидкости. Чем больше вязкость, тем больше сила сопротивления.

F тр. . = μ . F д = μN

μ . – коэффициент трения F д - сила давления на опору N – сила реакции опоры.



Если между соприкасающимися телами имеется слой смазки, то трение называют жидким, а если смазки нет, то – сухим.

Сила трения не потенциальная сила, т. е работа этой силы зависит от формы траектории движения и на замкнутой траектории работа этой силы не равна нулю.

3.Решите задачу : ударом клюшки хоккейной шайбе сообщили скорость 20 м/с. Через 2 секунды

скорость шайбы, движущейся прямолинейно, стала равна 16 м/с. Найдите ускорение шайбы.

Решение: по формуле для вычисления ускорения a=Dv/t путём вычислений получаем, что ускорение

шайбы 2 м/с 2 .

На все тела, находящиеся вблизи Земли, действует ее притяжение. Под действием силы тяжести падают на Землю капли дождя, снежинки, оторвавшиеся от веток листья.

Но когда тот же снег лежит на крыше, его по-прежнему притягивает Земля, однако он не проваливается сквозь крышу, а остается в покое. Что препятствует его падению? Крыша. Она действует на снег с силои, равной силе тяжести, но направленной в противоположную сторону. Что это за сила?

На рисунке 34, а изображена доска, лежащая на двух подставках. Если на ее середину поместить гирю, то под действием силы тяжести гиря начнет двигаться, но через некоторое время, прогнув доску, остановится (рис. 34, б ). При этом сила тяжести окажется уравновешенной силой, действующей на гирю со стороны изогнутой доски и направленной вертикально вверх. Эта сила называется силой упругости . Сила упругости возникает при деформации. Деформация - это изменение формы или размеров тела. Одним из видов деформации является изгиб. Чем больше прогибается опора, тем больше сила упругости, действующая со стороны этой опоры на тело. Перед тем как тело (гирю) положили на доску, эта сила отсутствовала. По мере движения гири, которая все сильнее и сильнее прогибала свою опору, возрастала и сила упругости. В момент остановки гири сила упругости достигла силы тяжести и их равнодействующая стала равной нулю.

Если на опору поместить достаточно легкий предмет, то ее деформация может оказаться столь незначительной, что никакого изменения формы опоры мы не заметим. Но деформация все равно будет! А вместе с ней будет действовать и сила упругости, препятствующая падению тела, находящегося на данной опоре. В подобных случаях (когда деформация тела незаметна и изменением размеров опоры можно пренебречь) силу упругости называют силой реакции опоры .

Если вместо опоры использовать какой-либо подвес (нить, веревку, проволоку, стержень и т. д.), то прикрепленный к нему предмет также может удерживаться в покое. Сила тяжести и здесь будет уравновешена противоположно направленной силой упругости. Сила упругости при этом возникает из-за того, что подвес под действием прикрепленного к нему груза растягивается. Растяжение еще один вид деформации.

Сила упругости возникает и при сжатии . Именно она заставляет распрямляться сжатую пружину и толкать прикрепленное к ней тело (см. рис. 27, б ).

Большой вклад в изучение силы упругости внес английский ученый Р. Гук. В 1660 г., когда ему было 25 лет, он установил закон, названный впоследствии его именем. Закон Гука гласит:

Сила упругости, возникающая при растяжении или сжатии тела, пропорциональна его удлинению.

Если удлинение тела, т. е. изменение его длины, обозначить через х , а силу упругости - через F упр , то закону Гука можно придать следующую математическую форму:

F упр = kx ,

где k - коэффициент пропорциональности, называемый жесткостью тела. У каждого тела своя жесткость. Чем больше жесткость тела (пружины, проволоки, стержня и т. д.), тем меньше оно изменяет свою длину под действием данной силы.

Единицей жесткости в СИ является ньютон на метр (1 Н/м).

Проделав ряд экспериментов, подтвердивших данный закон, Гук отказался от его публикации. Поэтому в течение долгого времени никто не знал о его открытии. Даже спустя 16 лет, все еще не доверяя своим коллегам, Гук в одной из своих книг привел лишь зашифрованную формулировку (анаграмму) своего закона. Она имела вид

Выждав два года, чтобы конкуренты могли сделать заявки о своих открытиях, он наконец расшифровал свой закон. Анаграмма расшифровывалась так:

ut tensio, sic vis

(что в переводе с латинского означает: каково растяжение, такова и сила). «Сила любой пружины,- писал Гук,- пропорциональна ее растяжению».

Гук изучал упругие деформации. Так называют деформации, которые исчезают после прекращения внешнего воздействия. Если, например, пружину несколько растянуть, а затем отпустить, то она снова примет свою первоначальную форму. Но ту же пружину можно растянуть на столько, что, после того как ее отпустят, она так и останется растянутой. Деформации, которые не исчезают после прекращения внешнего воздействия, называют пластическими .

Пластические деформации применяют при лепке из пластилина и глины, при обработке металлов - ковке, штамповке и т. д.

Для пластических деформаций закон Гука не выполняется.

В древние времена упругие свойства некоторых материалов (в частности, такого дерева, как тис) позволили нашим предкам изобрести лук - ручное оружие, предназначенное для метания стрел с помощью силы упругости натянутой тетивы.

Появившись примерно 12 тысяч лет назад, лук просуществовал на протяжении многих веков как основное оружие почти всех племен и народов мира. До изобретения огнестрельного оружия лук являлся самым эффективным боевым средством. Английские лучники могли пускать до 14 стрел в минуту, что при массовом использовании луков в бою создавало целую тучу стрел. Например, число стрел, выпущенных в битве при Азенкуре (во время Столетней войны), составило примерно 6 миллионов!

Широкое распространение этого грозного оружия в средние века вызвало обоснованный протест со стороны определенных кругов общества. В 1139 г. собравшийся в Риме Латеранский (церковный) собор запретил применение этого оружия против христиан. Однако борьба за «лучное разоружение» не имела успеха, и лук как боевое оружие продолжал использоваться людьми еще на протяжении пятисот лет.

Совершенствование конструкции лука и создание самострелов (арбалетов) привело к тому, что выпущенные из них стрелы стали пробивать любые доспехи. Но военная наука не стояла на месте. И в XVII в. лук был вытеснен огнестрельным оружием.

В наше время стрельба из лука является лишь одним из видов спорта.

1. В каких случаях возникает сила упругости? 2. Что называют деформацией? Приведите примеры деформаций. 3. Сформулируйте закон Гука. 4. Что такое жесткость? 5. Чем отличаются упругие деформации от пластических?

По физической природе силы упругости ближе к силам трения, чем к силам гравитации, так как они вызваны взаимодействием заряженных частиц, которые являются основой всех тел.

Однако силы упругости определяют только взаимное расположение воздействующих друг на друга тел и появляются только при деформации, тогда как силы трения скольжения возникают при относительном движении тел.

На расстояниях около диаметра молекулы силы притяжения между молекулами компенсированы силами отталкивания, то есть равнодействующая сил притяжения и отталкивания равна нулю. Если тело растягивать, то расстояние между молекулами увеличивается, при этом силы притяжения между молекулами становятся больше по величине, чем силы отталкивания. В теле появляются силы, которые препятствуют растяжению тела. При сжимании тела расстояние между молекулами уменьшается. Силы отталкивания становятся по модулю больше, чем силы притяжения, так возникают силы, противостоящие такого рода деформации тела.

Так, при деформации тел появляются силы электромагнитной природы, которые препятствуют изменению размеров тела, это так называемые силы упругости.

Деформация тела

Определение

Деформацией тела называют изменение размеров или формы тела. Виды деформаций: растяжение, сжатие, сдвиг, изгиб, кручение. Деформации тела возникают при перемещении одних частей тела по отношению к другим.

Силы упругости возникают только при деформациях. Величина силы упругости зависит от размера деформации. Силы упругости направлены против направления смещения частей тела при его деформации.

Для твердых тел выделяют два предельных вида деформации: упругие деформации и пластические. Если после прекращения действия деформирующей силы тело полностью восстанавливает свои размеры и форму, то такой вид деформации называют упругой. Для упругих деформаций существует однозначная зависимость между величиной деформации и деформирующей силой. Если после снятия деформирующей силы тело не восстанавливает (или восстанавливает не полностью) свои размер и форму, то такие деформации называют пластическими.

Определение силы упругости

Определение

Силой упругости (${\overline{F}}_{upr}$) называют силу, которая действует со стороны тела подвергшегося деформации, на касающиеся его тела. Данная сила направлена в сторону, противоположную смещению частей тела в состоянии деформации.

Силы упругости зависят от расположения тел при их взаимодействии и возникают только при деформациях тел.

Силы упругости направлены перпендикулярно к поверхности соприкосновения взаимодействующих тел. Исключение составляет деформация сдвига, при такой деформации сила упругости имеет касательную составляющую.

Силы упругости играют важную роль в проблемах механического равновесия, в том случае, если модели недеформируемого тела не достаточно.

Силы упругости являются частой причиной возникновения механических колебаний. При упругой деформации появляются силы, которые стремятся вернуть тело в положение равновесия. Если тело вывели из состояния равновесия и предоставили самому себе, то под воздействием си упругости появляется движение этого тела к положению равновесия. В результате существования инерции тело проходит положение равновесия и тогда возникает деформация противоположного знака, при этом процесс повторяется.

Закон Гука

Эксперименты показывают, что почти у всех твердых тел при небольших упругих деформациях размер деформации пропорционален деформирующей силе. Эта зависимость была установлена английским ученым Р. Гуком. Закон упругой деформации носит имя своего первооткрывателя. При больших деформациях связь между величиной деформации и деформирующей силой становится неоднозначной и точно нелинейной, упругая деформация превращается в пластическую.

Закон Гука утверждает, что при малых упругих деформациях величина деформации пропорциональна силе ее вызывающей. Закон Гука справедлив при видах упругой деформации (растяжения, сжатия, сдвига, кручения, изгиба).

Например, деформацию растяжения (сжатия) характеризуют с помощью такой величины как абсолютное удлинение: ($\Delta l=\left|l-l_0\right|$, где $l_0$ - длина недеформированного стержня). Тогда закон Гука для силы упругости записывают как:

где $k$ - коэффициент упругости, $\left=\frac{Н}{м}$. Коэффициент упругости зависит от материала тела, его размеров и формы.

Закон Гука выполняется с хорошей точностью для деформаций, появляющихся в стержнях из стали, чугуна, и других твердых веществ, в пружинах.

Для всяких упругих деформаций можно ввести постоянные, которые характеризуют упругие свойства только материала и не зависят от размеров тела. Например, модуль Юнга ($E$) для изотропного тела является характеристикой упругих свойств. Модуль Юнга равен механическому напряжению ($\sigma =\frac{F}{S},\ где\ F-\ $деформирующая сила или сила, возникающая в теле при деформации; $S$ - площадь), при котором относительное удлинение ($\frac{\Delta l}{l_0}$) равно единице при упругой деформации:

\[\frac{\Delta l}{l_0}=\frac{1}{E}\sigma \left(2\right).\]

Значение модуля Юнга определяют эмпирически.

Если деформации тела малы, то силы упругости можно определять по ускорению, которое данные силы сообщают телам. Если тело неподвижно, то модуль силы упругости находят из равенства нулю векторной суммы сил, которые действуют на тело.

Так, будет деформация упругой или пластической зависит не только от материала тела, но и от величины приложенной нагрузки. Упругие деформации много применяют, например, в амортизационных устройствах: рессорах, пружинах и т.д. На основе пластической деформации базируется разные виды холодной обработки металлов: прокатка, ковка и т.д.

Примеры задач на силу упругости и закон Гука

Пример 1

Задание: На проволоке, диаметр которой равен $d,$ висит груз (рис.1). Масса груза равна $m$. Каково натяжение материала ($\sigma $) у нижнего конца проволоки?

Решение: Сделаем рисунок.

Напряжение материала проволоки найдем, используя определение величины $\sigma $:

\[\sigma =\frac{F}{S}\left(1.1\right),\]

где $F$ - сила, деформирующая проволоку; $S=\frac{\pi d^2}{4}$ - площадь поперечного сечения проволоки. Силу $F$ найдем, используя третий закон Ньютона, согласно которому, сила $F$ приложенная к проволоке и растягивающая ее будет равна силе упругости, которая действует на груз и не дает ему падать под воздействием силы тяжести:

\[\overline{F}=-{\overline{F}}_u\left(1.2\right).\]

Величину силы упругости найдем, рассматривая рис.1 и силы, действующие на груз, висящий на проволоке в состоянии равновесия. Запишем второй закон Ньютона:

Из проекции уравнения (1.2) на ось Y получим:

Тогда из формул (1.1), (1.2) и (1.4) имеем:

\[\sigma =\frac{mg}{S}=\frac{4mg}{\pi d^2\ }(\frac{Н}{м^2}).\]

Ответ: $\sigma =\frac{4mg}{\pi d^2}\frac{Н}{м^2}$

Пример 2

Задание: Какова работа, совершенная при сжатии пружины на величину $\Delta l$ (изменение длины пружины), если жесткость пружины равна $k$, а деформация является упругой?\textit{}

Если деформация упругая, то по закону Гука деформирующая сила (сила сжатия) равна:

Работу найдем, используя ее определение:

Сила и перемещение сонаправлены, поэтому можно от произведения векторов в подынтегральном выражении перейти к произведению модулей соответствующих проекций на ось X:

Ответ: $A=\frac{k\Delta l^2}{2}$

На все тела, находящиеся вблизи Земли, действует ее притяжение. Под действием силы тяжести падают на Землю капли дождя, снежинки.

Но когда капли лежат на крыше, его притягивает Земля, однако он не проходит и не проваливается сквозь крышу, а остается в покое. Что препятствует его падению? Крыша. Она действует на капли с силой, равной силе тяжести, но направленной в противоположную сторону.

Рассмотрим один пример. Изображена доска, лежащая на двух подставках. Если на ее середину поместить тело, то под действием силы тяжести тело начнет продавливать доску, но через несколько минут, остановится. При этом сила тяжести станет уравновешенной силой, действующей на тело со стороны изогнутой доски и направленной вертикально вверх. Эта сила называется силой упругости.

Сила упругости возникает при деформации. Деформация - это изменение формы или размеров тела. Одним из видов деформации является изгиб. Чем больше прогибается опора, тем больше сила упругости, действующая со стороны этой опоры на тело. Перед тем как тело (гирю) положили на доску, эта сила отсутствовала. По мере движения гири, которая все сильнее и сильнее прогибала свою опору, возрастала и сила упругости. В момент остановки гири сила упругости достигла силы тяжести, и их равнодействующая стала равной нулю.

Если на опору поместить достаточно легкий предмет, то ее деформация может оказаться столь незначительной, что никакого изменения формы опоры мы не заметим. Но деформация все равно будет! А вместе с ней будет действовать и сила упругости, препятствующая падению тела, находящегося на данной опоре. В подобных случаях (когда деформация тела незаметна и изменением размеров опоры можно пренебречь) силу упругости называют силой реакции опоры.

Если вместо опоры использовать какой-либо подвес (нить, веревку, проволоку, стержень и т. д.), то прикрепленный к нему предмет также может удерживаться в покое. Сила тяжести и здесь будет уравновешена противоположно направленной силой упругости. Сила упругости при этом возникает из-за того, что подвес под действием прикрепленного к нему груза растягивается. Растяжение еще один вид деформации.

Большой вклад внес в изучение силы упругости ученый Р. Гук. Закон Гука гласит:

Сила упругости , возникающая при растяжении или сжатии тела, пропорциональна его удлинению.

Если удлинение тела, т.е. изменение его длины, обозначить через х, а силу упругости - через F(упр), то по закону Гука можно придать следующую математическую форму:

где k - коэффициент пропорциональности, называемый жесткостью тела. У каждого тела своя жесткость. Чем больше жесткость тела (пружины, проволоки, стержня и т. д.), тем меньше оно изменяет свою длину под действием данной силы.

Единицей жесткости в СИ является ньютон на метр (1 Н/м).

Продолжаем обзор некоторых теми из раздела «Механика». Наша сегодняшняя встреча посвящена силе упругости.

Именно эта сила лежит в основе работы механических часов, её воздействию подвергаются буксирные канаты и тросы подъемных кранов, амортизаторы автомобилей и железнодорожных составов. Её испытывает мяч и теннисный шарик, ракетка и другой спортивный инвентарь. Как возникает эта сила, и каким закономерностям подчиняется?

Как рождается сила упругости

Метеорит под действием земного тяготения падает на землю и… замирает. Почему? Разве земное тяготение исчезает? Нет. Сила не может исчезнуть просто так. В момент соприкосновения с землей уравновешивается другой силой равной ей по величине и противоположной по направлению. И метеорит, как и другие тела на поверхности земли, остается в покое.

Этой уравновешивающей силой является сила упругости.

Такие же упругие силы появляются в теле при всех видах деформации:

  • растяжения;
  • сжатия;
  • сдвига;
  • изгиба;
  • кручения.

Силы, возникающие в результате деформации, называются упругими.

Природа силы упругости

Механизм возникновение сил упругости удалось объяснить лишь в XX веке, когда была установлена природа сил межмолекулярного взаимодействия. Физики назвали их «гигантом с короткими руками». Каков смысл этого остроумного сравнения?

Между молекулами и атомами вещества действуют силы притяжения и отталкивания. Такое взаимодействие обусловлено, входящими в их состав мельчайших частиц, несущих положительные и отрицательные заряды. Силы эти достаточно велики (отсюда слово гигант), но проявляются лишь на очень малых расстояниях (с короткими руками). При расстояниях равных утроенному диаметру молекулы, эти частицы притягиваются, «радостно» устремляясь, друг к другу.

Но, соприкоснувшись, начинают активно отталкиваться друг от друга.

При деформации растяжения расстояние между молекулами возрастает. Межмолекулярные силы стремятся его сократить. При сжатии молекулы сближаются, что порождает отталкивание молекул.

А, поскольку все виды деформаций можно свести к сжатию и растяжению, то появление упругих сил при любых деформациях объяснимо этими рассуждениями.

Закон, установленный Гуком

Изучением сил упругости и их взаимосвязью с другими физическими величинами занимался соотечественник и современник . Его считают основоположником экспериментальной физики.

Учёный продолжал свои эксперименты около 20 лет. Он проводил опыты по деформации растяжения пружин, подвешивая к ним различные грузы. Подвешиваемый груз вызывал растяжение пружины до тех пор, пока возникшая в ней сила упругости не уравновешивала вес груза.

В результате многочисленных экспериментов ученый делает вывод: приложенная внешняя сила вызывает возникновение равной ей по величине силе упругости, действующей в противоположном направлении.

Сформулированный им закон (закон Гука) звучит так:

Сила упругости, возникающая при деформации тела, прямо пропорциональна величине деформации и направлена в сторону, противоположную перемещению частиц.

Формула закона Гука имеет вид:

  • F - модуль, т. е. численное значение силы упругости;
  • х - изменение длины тела;
  • k - коэффициент жесткости, зависящий от формы, размеров и материала тела.

Знак минус указывает то, что сила упругости направлена в сторону противоположную смещению частиц.

Каждый физический закон имеет свои границы применения. Закон, установленный Гуком можно применять только к упругим деформациям, когда после снятия нагрузки форма и размеры тела полностью восстанавливаются.

У пластичных тел (пластилин, влажная глина) такого восстановления не происходит.

Упругостью в той или иной степени обладают все твёрдые тела. Первое место по упругости занимает резина, второе - . Даже очень упругие материалы при определенных нагрузках могут проявлять пластичные свойства. Это используют для изготовления проволоки, вырезания специальными штампами деталей сложной формы.

Если у вас есть ручные кухонные весы (безмен), то на них наверняка написан максимальный вес, на который они рассчитаны. Скажем 2 кг. При подвешивании более тяжелого груза, находящаяся в них стальная пружина уже никогда не восстановит свою форму.

Работа силы упругости

Как и любая сила, сила упругости, способна совершать работу. Причем очень полезную. Она предохраняет деформируемое тело от разрушения. Если она с этим не справляется, наступает разрушение тела. Например, разрывается трос подъёмного крана, струна на гитаре, резинка на рогатке, пружина на весах. Эта работа всегда имеет знак минус, поскольку сама сила упругости тоже отрицательна.

Вместо послесловия

Вооружившись некоторыми сведениями о силах упругости и деформациях, мы легко ответим на некоторые вопросы. Скажем, почему крупные кости у человека имеют трубчатое строение?

Изогните металлическую или деревянную линейку. Её выпуклая часть испытает деформацию растяжения, а вогнутая - сжатия. Средняя же часть нагрузки не несет. Природа и воспользовалась этим обстоятельством, снабдив человека и животных трубчатыми костями. В процессе движения кости, мышцы и сухожилья испытывают все виды деформаций. Трубчатое строение костей значительно облегчает их вес, абсолютно не влияя на их прочность.

Стебли злаковых культур имеют такое же строение. Порывы ветра пригибают их до земли, а силы упругости помогают выпрямиться. Кстати, рама у велосипеда тоже изготавливается из трубок, а не из стержней: вес намного меньше и металл экономится.

Закон, установленный Робертом Гуком, послужил основой для создания теории упругости. Расчёты, выполненные по формулам этой теории, позволяют обеспечить долговечность высотных сооружений и других конструкций .

Если это сообщение тебе пригодилось, буда рада видеть тебя