Произведение крайних равно произведению средних примеры. Как составить пропорцию? Поймет любой школьник и взрослый. Как посчитать пропорцию

Формула пропорций

Пропо́рция - это равенство двух отношений, когда a:b=c:d

отношение 1 : 10 равно отношению 7 : 70, что также можно записать в виде дроби: 1 10 = 7 70 читается как: «один относится к десяти так же, как семь относится к семидесяти»

Основные свойства пропорции

Произведение крайних членов равно произведению средних членов (крест-накрест): если a:b=c:d , то a⋅d=b⋅c

1 10 ✕ 7 70 1 70 = 10 7

Обращение пропорции: если a:b=c:d , то b:a=d:c

1 10 7 70 10 1 = 70 7

Перестановка средних членов: если a:b=c:d , то a:c=b:d

1 10 7 70 1 7 = 10 70

Перестановка крайних членов: если a:b=c:d , то d:b=c:a

1 10 7 70 70 10 = 7 1

Решение пропорции с одним неизвестным | Уравнение

1 : 10 = x : 70 или 1 10 = x 70

Чтобы найти икс, нужно перемножить два известных числа крест-накрест и поделить на противоположное значение

x = 1 70 10 = 7

Как посчитать пропорцию

Задача: нужно пить 1 таблетку активированного угля на 10 килограмм веса. Сколько таблеток нужно выпить, если человек весит 70 кг?

Составим пропорцию: 1 таблетка - 10 кг x таблеток - 70 кг Чтобы найти икс, нужно перемножить два известных числа крест-накрест и поделить на противоположное значение: 1 таблетка x таблеток ✕ 10 кг 70 кг x = 1 70 : 10 = 7 Ответ: 7 таблеток

Задача: за пять часов Вася пишет две статьи. Сколько статей он напишет за 20 часов?

Составим пропорцию: 2 статьи - 5 часов x статей - 20 часов x = 2 20 : 5 = 8 Ответ: 8 статей

Будущим выпускникам школ могу сказать, что умение составлять пропорции мне пригодилось и , и для того, чтобы пропорционально уменьшать картинки, и в HTML-вёрстке интернет-страницы, и в бытовых ситуациях.

Для решения большинства задач в математике средней школы необходимо знание по составлению пропорций. Это несложное умение поможет не только выполнять сложные упражнения из учебника, но и углубиться в саму суть математической науки. Как составить пропорцию? Сейчас разберем.

Самым простым примером является задача, где известны три параметра, а четвертый необходимо найти. Пропорции бывают, конечно, разные, но часто требуется найти по процентам какое-нибудь число. Например, всего у мальчика было десять яблок. Четвертую часть он подарил своей маме. Сколько осталось яблок у мальчика? Это самый простой пример, который позволит составить пропорцию. Главное это сделать. Изначально было десять яблок. Пусть это 100%. Это мы обозначили все его яблоки. Он отдал одну четвертую часть. 1/4=25/100. Значит, у него осталось: 100% (было изначально) - 25% (он отдал) = 75%. Эта цифра показывает процентное отношение количества оставшихся фруктов к количеству имевшихся сначала. Теперь у нас есть три числа, по которым уже можно решить пропорцию. 10 яблок - 100%, х яблок - 75%, где х - искомое количество фруктов. Как составить пропорцию? Необходимо понимать, что это такое. Математически это выглядит так. Знак равно поставлен для вашего понимания.

10 яблок = 100%;

x яблок = 75%.

Оказывается, что 10/x = 100%/75. Это и есть основное свойство пропорций. Ведь чем больше x, тем больше процентов составляет это число от исходного. Решаем эту пропорцию и получаем, что x=7,5 яблок. Почему мальчик решил отдать нецелое количество, нам неизвестно. Теперь вы знаете, как составить пропорцию. Главное, найти два соотношения, в одном из которых есть искомое неизвестное.

Решение пропорции часто сводится к простому умножению, а потом к делению. В школах детям не объясняют, почему это именно так. Хотя важно понимать, что пропорциональные отношения есть математическая классика, сама суть науки. Для решения пропорций необходимо уметь обращаться с дробями. Например, часто приходится переводить проценты в обыкновенные дроби. То есть запись 95% не подойдет. А если сразу написать 95/100, то можно провести солидные сокращения, не начиная основного подсчета. Сразу стоит сказать, что если ваша пропорция получилась с двумя неизвестными, то ее не решить. Никакой профессор вам здесь не поможет. А ваша задача, скорее всего, имеет более сложный алгоритм правильных действий.

Рассмотрим еще один пример, где нет процентов. Автомобилист купил 5 литров бензина за 150 рублей. Он подумал о том, сколько он бы заплатил за 30 литров топлива. Для решения этой задачи обозначим за x искомое количество денег. Можете самостоятельно решить эту задачу и потом проверить ответ. Если вы еще не поняли, как составить пропорцию, то смотрите. 5 литров бензина - это 150 рублей. Как и в первом примере, запишем 5л - 150р. Теперь найдем третье число. Конечно, это 30 литров. Согласитесь, что пара 30 л - х рублей уместна в данной ситуации. Перейдем на математический язык.

5 литров - 150 рублей;

30 литров - х рублей;

Решаем эту пропорцию:

x = 900 рублей.

Вот и решили. В своей задаче не забудьте проверить на адекватность ответ. Бывает, что при неправильном решении автомобили достигают нереальных скоростей в 5000 километров в час и так далее. Теперь вы знаете, как составить пропорцию. Также вы сможете ее решить. Как видите, в этом нет ничего сложного.

Пропорции – это соразмерность, определённое соотношение частей (форм) между собой и с предметом в целом.
В костюме пропорции играют особенно важную роль: от того, в каких соотношениях находятся отдельные его части между собой и фигурой человека, зависит образная выразительность костюма и внешний облик самого человека.
При этом надо принимать во внимание форму и величину головного убора или причёски, форму и высоту каблука, количество и характер украшений, а также цветовое решение костюма. Все эти компоненты оказывают влияние на характер пропорций.

Пропорции бывают следующих видов (рис. 4.1):
пропорции равенства - это когда части костюма равны между собой (принцип одинаковости); такое членение вызывают ощущение покоя, статики;
пропорции неравенства – это когда части костюма не равны между собой (принцип разнообразия); такое членение вызывает ощущение движения, динамики. Неравенство может быть незначительным или построенным по принципу контраста;
пропорции «золотого сечения» (разновидность пропорций неравенства) выражается следующими соотношениями: 3:5 (5:3), 5:8 (8:5), 8:13 (18:8) и т.д. В каждом из этих отношений сумма двух чисел образует целое, которое относится к большему числу так, как большее к меньшему.

1 - «равенство»; 2 - «неравенство»; 3 - «золотое сечение» 3:5
Рис. 4.1. Виды пропорций.

Длина одежды и положение линии талии очень подвержены влиянию моды, но какие бы пропорции не были модны, наиболее гармоничными считаются пропорции, построенные по правилам “золотого сечения”.
В основе строения человеческой фигуры также лежит принцип “золотого сечения”, так как это соотношение выражает естественное членение фигуры линией талии на две неравные части (3:5).

3. Роль отношений и пропорций частей формы одежды в создании образной выразительности в костюме

В зависимости оттого, что входит в понятие красоты в ту или иную эпоху, возникают конкретные формы костюма с соответствующими пропорциями.
Стиль готики характеризуется вытянутыми удлинёнными пропорциями, отношение длины лифа к длине юбки было 1:6, 1:7. Эпоха Возрождения напротив тяготела к некоторой «приземлённости», монументальности; характерны пропорции «золотого сечения», но при этом отношение ширины одежды в плечевом поясе к ширине юбки почти равно единице.
В эпоху классицизма – снова вытянутые пропорции, соотношение длины лифа и юбки: спереди 1:6, со спины 1:7 (шлейф).
Стиль Ампир делает пропорции более умеренными, так как юбки в нижней части расширяются и появляются внизу оборки.
Очень сильно усложняется пропорциональное решение костюма в XX в., когда юбки укоротились и стала видна значительная часть ног. На изменении соотношений открытой части ног и платья основывается в значительной мере формирование и изменение моды.
В 1925 году в моду входят пропорции равенства, талия опускается на бёдра, величины юбки и лифа становятся равными. В дальнейшем юбки укорачиваются, линия членения опускается ещё ниже, пропорции становятся 2 к 1. Такие пропорции придали некоторую неустойчивость фигуре.
Какие бы пропорции не были в моде, при работе над композицией одежды надо считаться с пропорциями фигуры человека.

Подведем итоги:
Существуют следующие отношения частей формы одежды: тождество, нюанс, контраст.
Пропорции – это соразмерность, определённое соотношение частей (форм) между собой и с предметом в целом.
Пропорции бывают следующих видов: пропорции равенства, неравенства, «золотого сечения».
Пропорция «золотого сечения» выражается следующими соотношениями: 3:5 (5:3). В каждом из этих отношений сумма двух чисел образует целое, которое относится к большему числу так, как большее к меньшему.
В зависимости оттого, что входит в понятие красоты в ту или иную эпоху, возникают конкретные формы костюма с соответствующими пропорциями. Какие бы пропорции не были в моде, при работе над композицией одежды надо считаться с пропорциями фигуры человека.

Двух отношений называется пропорцией .

10: 5 = 6: 3 или

Пропорцию a : b = c : d или , читают так: отношение a к b равно отношению c к d , или a относится к b , как c относится к d .

Члены пропорции: крайние и средние

Члены отношений, составляющих пропорцию, называются членами пропорции . Числа a и d называют крайними членами пропорции, а числа b и c - средними членами пропорции:

Эти названия условны, так как достаточно написать пропорцию в обратном порядке (переставить отношения местами):

c : d = a : b или

и крайние члены станут средними, а средние - крайними.

Главное свойство пропорции

Произведение крайних членов пропорции равно произведению средних.

Пример: рассмотрим пропорцию . Если воспользоваться вторым свойством равенства и умножить обе её части на произведение bd (для приведения обеих частей равенства от дробного вида к целому), то получим:

Сокращаем дроби и получаем:

ad = cb

Из главного свойства пропорции следует:

Нахождение неизвестного члена пропорции

Свойства пропорции позволяют найти любой из членов пропорции, если он неизвестен. Рассмотрим пропорцию:

x : 8 = 6: 3

Тут неизвестен крайний член. Так как крайний член равен произведению средних, разделённому на другой крайний, то

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.