Решение прямоугольного треугольника. Как найти стороны прямоугольного треугольника? Основы геометрии Формула угол треугольника катеты

Зная один из катетов в прямоугольном треугольнике, можно найти второй катет и гипотенузу используя тригонометрические отношения – синус и тангенс известного угла. Так как отношение противолежащего углу катета к гипотенузе равно синусу этого угла, следовательно, чтобы найти гипотенузу нужно катет разделить на синус угла. a/c=sin⁡α c=a/sin⁡α

Второй катет можно найти из тангенса известного угла, как отношение известного катета к тангенсу. a/b=tan⁡α b=a/tan⁡α

Чтобы вычислить неизвестный угол в прямоугольном треугольнике нужно из 90 градусов вычесть величину угла α. β=90°-α

Периметр и площадь прямоугольного треугольника через катет и противолежащий ему угол можно выразить, подставив полученные ранее выражения для второго катета и гипотенузы в формулы. P=a+b+c=a+a/tan⁡α +a/sin⁡α =a tan⁡α sin⁡α+a sin⁡α+a tan⁡α S=ab/2=a^2/(2 tan⁡α)

Вычислить высоту также можно через тригонометрические отношения, но уже во внутреннем прямоугольном треугольнике со стороной a, который она образует. Для этого нужно сторону a, как гипотенузу такого треугольника умножить на синус угла β или косинус α, так как согласно тригонометрическим тождествам они равнозначны. (рис. 79.2) h=a cos⁡α

Медиана гипотенузы равна половине гипотенузы или известному катету a, деленному на два синуса α. Чтобы найти медианы катетов, приведем формулы к соответствующему виду для известной стороны и углы. (рис.79.3) m_с=c/2=a/(2 sin⁡α) m_b=√(2a^2+2c^2-b^2)/2=√(2a^2+2a^2+2b^2-b^2)/2=√(4a^2+b^2)/2=√(4a^2+a^2/tan^2⁡α)/2=(a√(4 tan^2⁡α+1))/(2 tan⁡α) m_a=√(2c^2+2b^2-a^2)/2=√(2a^2+2b^2+2b^2-a^2)/2=√(4b^2+a^2)/2=√(4b^2+c^2-b^2)/2=√(3 a^2/tan^2⁡α +a^2/sin^2⁡α)/2=√((3a^2 sin^2⁡α+a^2 tan^2⁡α)/(tan^2⁡α sin^2⁡α))/2=(a√(3 sin^2⁡α+tan^2⁡α))/(2 tan⁡α sin⁡α)

Так как биссектрисой прямого угла в треугольнике является произведение двух сторон и корня из двух, деленное на сумму этих сторон, то заменив один из катетов на отношение известного катета к тангенсу, получаем следующее выражение. Аналогично, подставив отношение во вторую и третью формулы, можно вычислить биссектрисы углов α и β. (рис.79.4) l_с=(a a/tan⁡α √2)/(a+a/tan⁡α)=(a^2 √2)/(a tan⁡α+a)=(a√2)/(tan⁡α+1) l_a=√(bc(a+b+c)(b+c-a))/(b+c)=√(bc((b+c)^2-a^2))/(b+c)=√(bc(b^2+2bc+c^2-a^2))/(b+c)=√(bc(b^2+2bc+b^2))/(b+c)=√(bc(2b^2+2bc))/(b+c)=(b√(2c(b+c)))/(b+c)=(a/tan⁡α √(2c(a/tan⁡α +c)))/(a/tan⁡α +c)=(a√(2c(a/tan⁡α +c)))/(a+c tan⁡α) l_b=√(ac(a+b+c)(a+c-b))/(a+c)=(a√(2c(a+c)))/(a+c)=(a√(2c(a+a/sin⁡α)))/(a+a/sin⁡α)=(a sin⁡α √(2c(a+a/sin⁡α)))/(a sin⁡α+a)

Средняя линия проходит параллельно одной из сторон треугольника, при этом образуя еще один подобный прямоугольный треугольник с такими же по величине углами, в котором все стороны в два раза меньше, чем у изначального. Исходя из этого, средние линии можно найти по следующим формулам, зная только катет и противолежащий ему угол. (рис.79.7) M_a=a/2 M_b=b/2=a/(2 tan⁡α) M_c=c/2=a/(2 sin⁡α)

Радиус вписанной окружности равен разности катетов и гипотенузы, деленной на два, а чтобы найти радиус описанной окружности, нужно разделить на два гипотенузу. Заменяем второй катет и гипотенузу на отношения катета a к синусу и тангенсу соответственно. (рис. 79.5, 79.6) r=(a+b-c)/2=(a+a/tan⁡α -a/sin⁡α)/2=(a tan⁡α sin⁡α+a sin⁡α-a tan⁡α)/(2 tan⁡α sin⁡α) R=c/2=a/2sin⁡α

В жизни нам часто придется сталкиваться с математическими задачами: в школе, в университете, а затем помогая своему ребенку с выполнением домашнего задания. Люди определенных профессий будут сталкиваться с математикой ежедневно. Поэтому полезно запоминать или вспоминать математические правила. В этой статье мы разберем одно из них: нахождение катета прямоугольного треугольника.

Что такое прямоугольный треугольник

Для начала вспомним, что такое прямоугольный треугольник. Прямоугольный треугольник – это геометрическая фигура из трех отрезков, которые соединяют точки, не лежащие на одной прямой, и один из углов этой фигуры равен 90 градусам. Стороны, образующие прямой угол, называются катетами, а сторона, которая лежит напротив прямого угла – гипотенузой.

Находим катет прямоугольного треугольника

Существует несколько способов, позволяющих узнать длину катета. Хотелось бы рассмотреть бы их подробнее.

Теорема Пифагора, чтобы найти катет прямоугольного треугольника

Если нам известны гипотенуза и катет, то мы можем найти длину неизвестного катета по теореме Пифагора. Звучит она так: “Квадрат гипотенузы равен сумме квадратов катетов”. Формула: c²=a²+b², где c – гипотенуза, a и b – катеты. Преобразовываем формулу и получаем: a²=c²-b².

Пример. Гипотенуза равна 5 см, а катет – 3 см. Преобразовываем формулу: c²=a²+b² → a²=c²-b². Далее решаем: a²=5²-3²; a²=25-9; a²=16; a=√16; a=4 (см).


Тригонометрические соотношения, чтобы найти катет прямоугольного треугольника

Также можно найти неизвестный катет, если известны любая другая сторона и любой острый угол прямоугольного треугольника. Есть четыре варианта нахождения катета при помощи тригонометрических функций: по синусу, косинусу, тангенсу, котангенсу. Для решения задач нам поможет таблица, которая находится чуть ниже. Рассмотрим эти варианты.


Найти катет прямоугольного треугольника при помощи синуса

Синус угла (sin) – это отношение противолежащего катета к гипотенузе. Формула: sin=a/c, где а – катет, лежащий против данного угла, а с – гипотенуза. Далее преобразуем формулу и получаем: a=sin*c.

Пример. Гипотенуза равна 10 см, угол А равен 30 градусов. По таблице вычисляем синус угла А, он равен 1/2. Затем по преобразованной формуле решаем: a=sin∠А*c; a=1/2*10; a=5 (см).


Найти катет прямоугольного треугольника при помощи косинуса

Косинус угла (cos) – это отношение прилежащего катета к гипотенузе. Формула: cos=b/c, где b – катет, прилежащий к данному углу, а с – гипотенуза. Преобразуем формулу и получим: b=cos*c.

Пример. Угол А равен 60 градусов, гипотенуза равна 10 см. По таблице вычисляем косинус угла А, он равен 1/2. Далее решаем: b=cos∠A*c; b=1/2*10, b=5 (см).


Найти катет прямоугольного треугольника при помощи тангенса

Тангенс угла (tg) – это отношение противолежащего катета к прилежащему. Формула: tg=a/b, где а – противолежащий к углу катет, а b – прилежащий. Преобразуем формулу и получаем: a=tg*b.

Пример. Угол А равен 45 градусов, гипотенуза равна 10 см. По таблице вычисляем тангенс угла А, он равен Решаем: a=tg∠A*b; a=1*10; a=10 (см).


Найти катет прямоугольного треугольника при помощи котангенса

Котангенс угла (ctg) – это отношение прилежащего катета к противолежащему. Формула: ctg=b/a, где b – прилежащий к углу катет, а – противолежащий. Иначе говоря, котангенс – это “перевернутый тангенс”. Получаем: b=ctg*a.

Пример. Угол А равен 30 градусов, противолежащий катет равен 5 см. По таблице тангенс угла А равен √3. Вычисляем: b=ctg∠A*a; b=√3*5; b=5√3 (см).


Итак, теперь вы знаете, как находить катет в прямоугольном треугольнике. Как видите, это не так уж и сложно, главное – запомнить формулы.

Первые - это отрезки, которые прилегают к прямому углу, а гипотенуза является самой длинной частью фигуры и находится напротив угла в 90 о. Пифагоровым треугольником называется тот, стороны которого равны натуральным числам; их длины в таком случае имеют название «пифагорова тройка».

Египетский треугольник

Для того чтобы нынешнее поколение узнало геометрию в том виде, в котором ее преподают в школе сейчас, она развивалась несколько веков. Основополагающим моментом считается теорема Пифагора. Стороны прямоугольного известна на весь мир) составляют 3, 4, 5.

Мало кто не знаком с фразой «Пифагоровы штаны во все стороны равны». Однако на самом деле теорема звучит так: c 2 (квадрат гипотенузы) = a 2 +b 2 (сумма квадратов катетов).

Среди математиков треугольник со сторонами 3, 4, 5 (см, м и т. д.) называется "египетским". Интересно то, что которая вписана в фигуру, равняется единице. Название возникло примерно в V столетии до н.э., когда философы Греции ездили в Египет.

При построении пирамид архитекторы и землемеры пользовались соотношением 3:4:5. Такие сооружения получались пропорциональными, приятными на вид и просторными, а также редко рушились.

Для того чтобы построить прямой угол, строители использовали веревку, на которой было завязано 12 узлов. В таком случае вероятность построения именно прямоугольного треугольника повышалась до 95%.

Признаки равенства фигур

  • Острый угол в прямоугольном треугольнике и большая сторона, которые равны тем же элементам во втором треугольнике, - бесспорный признак равенства фигур. Беря во внимание сумму углов, легко доказать, что вторые острые углы также равны. Таким образом, треугольники одинаковы по второму признаку.
  • При наложении двух фигур друг на друга повернем их таким образом, чтобы они, совместившись, стали одним равнобедренным треугольником. По его свойству стороны, а точнее, гипотенузы, равны, так же как и углы при основании, а значит, эти фигуры одинаковые.

По первому признаку очень просто доказать то, что треугольники действительно равны, главное, чтобы две меньшие стороны (т. е. катеты) были равными между собой.

Треугольники будут одинаковыми по II признаку, суть которого заключается в равенстве катета и острого угла.

Свойства треугольника с прямым углом

Высота, которую опустили из прямого угла, разбивает фигуру на две равные части.

Стороны прямоугольного треугольника и его медианы легко узнать по правилу: медиана, которая опущена на гипотенузу, равна ее половине. можно найти как по формуле Герона, так и по утверждению, что она равна половине произведению катетов.

В прямоугольном треугольнике действуют свойства углов в 30 о, 45 о и 60 о.

  • При угле, который равен 30 о, следует помнить, что противолежащий катет будет равен 1/2 самой большой стороны.
  • Если угол 45 о, значит, второй острый угол также 45 о. Это говорит о том, что треугольник равнобедренный, и его катеты одинаковы.
  • Свойство угла в 60 о заключается в том, что третий угол имеет градусную меру в 30 о.

Площадь легко узнать по одной из трех формул:

  1. через высоту и сторону, на которую она опускается;
  2. по формуле Герона;
  3. по сторонам и углу между ними.

Стороны прямоугольного треугольника, а точнее катеты, сходятся с двумя высотами. Для того чтобы найти третью, необходимо рассматривать образовавшийся треугольник, и тогда по теореме Пифагора вычислить необходимую длину. Помимо этой формулы существует также соотношение удвоенной площади и длины гипотенузы. Наиболее распространенным выражением среди учеников является первое, так как требует меньше расчетов.

Теоремы, применяемые к прямоугольному треугольнику

Геометрия прямоугольного треугольника включает в себя использование таких теорем, как:


Прямоугольный треугольник содержит в себе огромное множество зависимостей. Это делает его привлекательным объектом для разного рода геометрических задач. Одной из наиболее часто встречающихся задач считается нахождение гипотенузы.

Прямоугольный треугольник

Прямоугольный треугольник – это треугольник, который содержит в себе прямой угол, т.е. угол в 90 градусов. Только в прямоугольном треугольнике можно выразить тригонометрические функции через величины сторон. В произвольном треугольнике придется производить дополнительные построения.
В прямоугольном треугольнике две из трех высот совпадают со сторонами зовутся катетами. Третья сторона зовется гипотенузой. Высота, проведенная к гипотенузе единственная в этом виде треугольника, требующая дополнительных построений.

Рис. 1. Виды треугольников.

В прямоугольном треугольнике не может быть тупых углов. Так же, как невозможно и существование второго прямого угла. В этом случае нарушается тождество суммы углов треугольника, которая всегда равна 180 градусам.

Гипотенуза

Перейдем непосредственно к гипотенузе треугольника. Гипотенуза – это наибольшая сторона треугольника. Гипотенуза всегда больше любого из катетов, но при этом всегда меньше суммы катетов. Это следствие из теоремы неравенства треугольника.

Теорема гласит: в треугольнике ни одна из сторон не может больше суммы двух других. Существует и вторая формулировка или вторая часть теоремы: в треугольнике напротив большей стороны лежит больший угол и наоборот.

Рис. 2. Прямоугольный треугольник.

В прямоугольном треугольнике большим углом является прямой угол, так как второго прямого угла или тупого угла быть не может по уже названным причинам. Значит напротив прямого угла всегда лежит большая сторона.

Кажется непонятным, почему именно прямоугольный треугольник заслужил отдельное наименование каждой из сторон. На самом деле, в равнобедренном треугольнике стороны так же носят свои названия: боковые стороны и основание. Но именно за катеты и гипотенузы учителя особенно любят ставить двойки. Почему? С одной стороны это дань памяти древним грекам, изобретателям математики. Именно они изучали прямоугольные треугольники и наряду с этими знаниями оставили целый пласт информации, на котором строится современная наука. С другой же стороны существование этих названий значительно упрощает формулировки теорем и тригонометрических тождеств.

Теорема Пифагора

Если учитель спрашивает о формуле гипотенузы прямоугольного треугольника, значит, с вероятностью 90 %, он имеет в виду теорему Пифагора. Теорема гласит: в прямоугольном треугольнике квадрат гипотенузы равен суммы квадратов катетов.

Рис. 3. Гипотенуза прямоугольного треугольника.

Обратите внимание, как четко и емко формулируется теорема. Подобной простоты невозможно достигнуть без использования понятий гипотенузы и катета.

Теорема имеет следующую формулу:

$c^2=b^2+a^2$ – где с - гипотенуза, a и b - катеты прямоугольного треугольника.

Что мы узнали?

Мы поговорили о том, что такое прямоугольный треугольник. Узнали, зачем вообще придумали названия катетов и гипотенузы. Выяснили некоторые свойства гипотенузы и привели формулу длины гипотенузы треугольника через теорему Пифагора.

Тест по теме

Оценка статьи

Средняя оценка: 4.6 . Всего получено оценок: 213.

Треугольник представляет собой геометрическое число, состоящее из трех сегментов, которые соединяют три точки, которые не лежат на одной линии. Точки, которые образуют треугольник, называются его точками, а сегменты бок о бок.

В зависимости от типа треугольника (прямоугольного, монохромного и т. Д.) Вы можете рассчитать сторону треугольника по-разному, в зависимости от исходных данных и условий проблемы.

Быстрая навигация для статьи

Чтобы вычислить стороны прямоугольного треугольника, используется теорема Пифагора, согласно которой квадрат гипотенузы равен сумме квадратов ноги.

Если мы отмечаем ноги буквами «a» и «b», а гипотенуза — «c», то страницы могут быть найдены со следующими формулами:

Если известны острые углы прямоугольного треугольника (a и b), его стороны могут быть найдены со следующими формулами:

Обрезанный треугольник

Треугольник называется равносторонним треугольником, в котором обе стороны одинаковы.

Как найти гипотенузу в двух ногах

Если буква «a» идентична одной и той же странице, «b» — основание, «b» — угол, противоположный основанию, «a» — смежный угол для вычисления страниц может использовать следующие формулы:

Два угла и боковая сторона

Если известны одна страница (c) и два угла (a и b) любого треугольника, формула синуса используется для вычисления оставшихся страниц:

Вы должны найти третье значение y = 180 — (a + b), потому что

сумма всех углов треугольника равна 180 °;

Две стороны и угол

Если известны две стороны треугольника (a и b) и угол между ними (y), для вычисления третьей стороны может быть использована теорема косинуса.

Как определить периметр прямоугольного треугольника

Треугольный треугольник представляет собой треугольник, один из которых равен 90 градусам, а два других — острые. расчет периметр такой треугольник в зависимости от количества известных сведений об этом.

Вам это понадобится

  • В зависимости от случая, навыки 2 трех сторон треугольника, а также один из его острых углов.

инструкции

первый Метод 1. Если известны все три страницы треугольник , Затем, независимо, перпендикулярно или не треугольно, периметр рассчитывается как: P = A + B + C, где возможно, c — гипотенуза; a и b — ноги.

второй Способ 2.

Если в прямоугольнике есть только две стороны, то, используя теорему Пифагора, треугольник может быть рассчитана по формуле: P = v (a2 + b2) + a + b или P = v (c2 — b2) + b + c.

третий Метод 3. Пусть гипотенуза c и острый угол? Учитывая прямоугольный треугольник, можно будет обнаружить периметр таким образом: P = (1 + sin?

четвёртая Метод 4. Говорят, что в правом треугольнике длина одной ноги равна а и, напротив, имеет острый угол. Затем вычислить периметр это треугольник будет выполняться по формуле: P = a * (1 / tg?

1 / сын? + 1)

пятые Способ 5.

Онлайн-расчет треугольника

Позвольте нашей ноге привести и быть включенным в нее, тогда диапазон будет рассчитываться как: P = A * (1 / CTG + 1 / + 1 cos?)

Похожие видео

Теорема Пифагора является основой любой математики. Определяет связь между сторонами истинного треугольника. Теперь указано 367 доказательств этой теоремы.

инструкции

первый Классическая школьная формулировка теоремы Пифагора звучит так: квадрат гипотенузы равен сумме квадратов ног.

Чтобы найти гипотенузу в прямоугольном треугольнике двух Catets, вы должны обратиться, чтобы построить квадрат длины ног, собрать их и взять квадратный корень из суммы. В оригинальной формулировке его высказывания рынок основан на гипотенузе, равном сумме квадратов из 2 квадратов производства Catete. Однако современная алгебраическая формулировка не требует введения представления области.

второй Например, прямоугольный треугольник, ноги которого составляют 7 см и 8 см.

Тогда, согласно теореме Пифагора, квадратная гипотенуза равна R + S = 49 + 64 = 113 см. Гипотенуза равна квадратному корню из числа 113.

Углы прямоугольного треугольника

Результатом стал необоснованный номер.

третий Если треугольники — ноги 3 и 4, то гипотенуза = 25 = 5. Когда вы извлекаете квадратный корень, вы получаете натуральное число. Числа 3, 4, 5 образуют пигагорейский триплет, так как они удовлетворяют соотношению x? + Y? = Z, что естественно.

Другими примерами пифагорейского триплета являются: 6, 8, 10; 5, 12, 13; 15, 20, 25; 9, 40, 41.

четвёртая В таком случае, если ноги идентичны друг другу, теорема Пифагора превращается в более примитивное уравнение. Например, пусть такая рука равна числу А и гипотенуза определена для С, а затем с? = Ap + Ap, C = 2A2, C = A? 2. В этом случае вам не нужен A.

пятые Теорема Пифагора — частный случай, который больше общей теоремы косинуса, который устанавливает связь между тремя сторонами треугольника для любого угла между двумя из них.

Совет 2: Как определить гипотенузу для ног и углов

Гипотенуза называется стороной в прямоугольном треугольнике, которая противоположна углу 90 градусов.

инструкции

первый В случае известных катетеров, а также острого угла прямоугольного треугольника может гипотенузы размер, равный отношению ноги к косинус / синус этого угла, если угол находился напротив / е включают в себя: Н = С1 (или С2) / грех, Н = С1 (или С2 ?) / cos ?. Пример: Пусть ABC задан неправильный треугольник с гипотенузой AB и под прямым углом C.

Пусть B равно 60 градусам и A 30 градусов. Длина ножки BC 8 см. Должна быть обнаружена длина гипотенузы AB. Для этого вы можете использовать один из вышеуказанных методов: AB = BC / cos60 = 8 см. AB = BC / sin30 = 8 см.

Гипотенуза — самая длинная сторона прямоугольника треугольник . Он расположен под прямым углом. Метод поиска гипотенузы прямоугольника треугольник в зависимости от исходных данных.

инструкции

первый Если ваши ноги перпендикулярны треугольник , то длина гипотенузы прямоугольника треугольник может быть обнаружено пифагорейским аналогом — квадрат длины гипотенузы равен сумме квадратов длин ног: c2 = a2 + b2, где a и b — длина ног правой треугольник .

второй Если известно, и одна из ног под острым углом, формула для нахождения гипотенузы будет зависеть от наличия или отсутствий под определенным углом по отношению к известному катету — смежно (катет расположена вблизи), или наоборот (расположено противоположный случай nego.V указанного угол равен доле гипотенуза ноги в косинусном угол: a = a / cos; E, с другой стороны, гипотенуза такая же, как отношение синусоидальных углов: da = a / sin.

Похожие видео

Полезные советы
Угловой треугольник, стороны которого связаны как 3: 4: 5, называемые египетской дельтой, из-за того, что эти фигуры широко используются архитекторами древнего Египта.

Это также самый простой пример треугольников Джерона, в котором страницы и область представлены целыми числами.

Треугольник называется прямоугольником, угол которого равен 90 °. Сторона, противоположная правому углу, называется гипотенузой, другая — ногами.

Если вы хотите найти, как прямоугольного треугольника, образованного некоторыми свойствами правильных треугольников, а именно тот факт, что сумма острых углов 90 °, который используется, и тот факт, что длина противоположной ноги составляет половину гипотенузы составляет 30 °.

Быстрая навигация для статьи

Обрезанный треугольник

Одним из свойств равного треугольника является то, что его два угла одинаковы.

Чтобы вычислить угол прямоугольного равного треугольника, вам нужно знать, что:

  • Это не хуже 90 °.
  • Значения острых углов определяются по формуле: (180 ° -90 °) / 2 = 45 °, т.е.

    Углы α и β равны 45 °.

Если известное значение одного из острых углов известно, другое можно найти по формуле: β = 180º-90º-α или α = 180º-90º-β.

Это соотношение наиболее часто используется, если один из углов составляет 60 ° или 30 °.

Ключевые понятия

Сумма внутренних углов треугольника равна 180 °.

Потому что это один уровень, два остаются острыми.

Вычислить треугольник онлайн

Если вы хотите их найти, вам нужно знать, что:

Другие способы

Значения острых углов прямоугольного треугольника могут быть вычислены из среднего значения — с линией от точки на противоположной стороне треугольника, а высота — линия представляет собой перпендикуляр, опущенной из гипотенузы под прямым углом.

Пусть медиана вытягивается от правого угла до середины гипотенузы, а h — высота. В этом случае оказывается, что:

  • sin α = b / (2 * s); sin β = a / (2 * s).
  • cos α = a / (2 * s); cos β = b / (2 * s).
  • sin α = h / b; sin β = h / a.

Две страницы

Если длины гипотенузы и одна из ног известны в прямоугольном треугольнике или с двух сторон, то для определения значений острых углов используются тригонометрические тождества:

  • α = arcsin (a / c), β = arcsin (b / c).
  • α = arcos (b / c), β = arcos (a / c).
  • α = arctg (a / b), β = arctg (b / a).

Длина прямоугольного треугольника

Площадь и площадь треугольника

периметр

Окружность любого треугольника равна сумме длин трех сторон. Общая формула для поиска треугольного треугольника:

где P — окружность треугольника, a, b и c его стороны.

Периметр равного треугольника можно найти путем последовательного объединения длин его сторон или умножения боковой длины на 2 и добавления к продукту длины основания.

Общая формула для нахождения равновесного треугольника будет выглядеть так:

где P — периметр равного треугольника, но либо b, b — основание.

Периметр равностороннего треугольника можно найти путем последовательного объединения длины его сторон или путем умножения длины любой страницы на 3.

Общая формула для нахождения обода равносторонних треугольников будет выглядеть так:

где P — периметр равностороннего треугольника, a — любая из его сторон.

область

Если вы хотите измерить область треугольника, вы можете сравнить ее с параллелограммом. Рассмотрим треугольник ABC:

Если мы возьмем тот же треугольник и зафиксируем его так, чтобы мы получили параллелограмм, мы получим параллелограмм той же высоты и основы, что и этот треугольник:

В этом случае общая сторона треугольников складывается вместе по диагонали формованного параллелограмма.

Из свойств параллелограмма. Известно, что диагонали параллелограмма всегда делятся на два равных треугольника, то поверхность каждого треугольника равна половине диапазона параллелограмма.

Так как площадь параллелограмма совпадает с продуктом его базовой высоты, площадь треугольника будет равна половине этого продукта. Таким образом, для ΔABC область будет одинаковой

Теперь рассмотрим прямоугольный треугольник:

Два одинаковых прямоугольных треугольника можно сгибать в прямоугольник, если он прислоняется к ним, что каждая другая гипотенуза.

Так как поверхность прямоугольника совпадает с поверхностью соседних сторон, площадь данного треугольника одинакова:

Отсюда можно заключить, что поверхность любого прямоугольного треугольника равна произведению ног, деленная на 2.

Из этих примеров можно сделать вывод, что поверхность каждого треугольника такая же, как произведение длины, а высота снижается до подложки, разделенной на 2.

Общая формула для поиска области треугольника будет выглядеть так:

где S — область треугольника, но его основание, но высота падает на дно a.